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 Fee for Service Adjuster and Payment Recovery for Contract Level Risk 
Adjustment Data Validation Audits - Technical Appendix 
 
 
Development of the Fee for Service Adjuster (FFSA) was initiated as a response to the 
Medicare Advantage (MA) organizations’ assertion that because the Centers for 
Medicare and Medicaid Services - Hierarchical Condition Category (CMS-HCC) risk 
adjustment model is calibrated on FFS diagnoses that are not validated by medical record 
documentation, there is an inaccuracy in payment that should be accounted for in Risk 
Adjustment Data Validation (RADV) audit recoveries. They have argued that the 
inaccuracy due to audit miscalibration introduces a systematic bias that causes 
underpayments to plans relative to FFS, which in turn is exacerbated by RADV payment 
error recoveries. 1 
 
In this section, we provide an expanded discussion on the theoretical, economic, and 
empirical grounds to evaluate the conception of the FFSA. The issues we focus on are as 
follows:  

(1) Statistically, the foundations that would lead to such a payment bias are 
largely absent. 

(2) Application of a FFSA to RADV recoveries is not an appropriate way to 
adjust for this bias without arbitrarily changing the payment methodology for 
plans deemed to owe recoveries vis-à-vis unaudited plans. 

(3) Our empirical analysis does not provide evidence of a calibration error bias 
on the MA population. 

  
I. Weak Statistical Foundations 
  
The statistical foundation that would lead to a consistent bias is largely non-existent 
within the context of the risk adjustment modeling framework for MA. The discussion 
below examines how a bias can arise and why our circumstances are different. 
  
Assume one wished to estimate an econometric model and apply it to the same 
population upon which the data was generated. In regression modeling, independent 
variables are assumed fixed and free of measurement error. If independent variables have 
measurement error, the affected regression estimates may be biased downward. 
 
We first look at the econometric framework given the above assumptions. A simplified 
CMS-HCC model can be the following 
 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻∗ + 𝑒𝑒 

                                                             
1 In the context of this discussion, “underpayments” and “overpayments” are evaluated 
relative to the expected true FFS costs of a given model coefficient. They are not RADV 
overpayments and underpayments. 
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where 𝐸𝐸𝐸𝐸𝐸𝐸 are FFS expenditures and 𝐻𝐻𝐻𝐻𝐻𝐻∗ has the value of one if the sole HCC is 
present and zero if the HCC is not present and D represents the existence of a 
demographic characteristic. 
 
We measure 𝐻𝐻𝐻𝐻𝐻𝐻∗ with error so  

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐻𝐻𝐻𝐻𝐻𝐻∗ + 𝑤𝑤 
 
Which in turn implies 

𝐻𝐻𝐻𝐻𝐻𝐻∗ = 𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑤𝑤 
 
Here, 𝑤𝑤 is the measurement error of the HCC. 
 
Thus, instead of estimating 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻∗ + 𝑒𝑒, we in fact estimate 
 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽(𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑤𝑤) + 𝑒𝑒 
 
Rearranging terms, we can see this is  
 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽(𝐻𝐻𝐻𝐻𝐻𝐻) + (𝑒𝑒 − 𝛽𝛽𝑤𝑤) 
 
or 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛼𝛼𝛼𝛼 + 𝛽𝛽(𝐻𝐻𝐻𝐻𝐻𝐻) + 𝑧𝑧 
 

Where the actual error term 𝑧𝑧 = (𝑒𝑒 − 𝛽𝛽𝑤𝑤). 
 
Under Ordinary Least Squares (OLS) assumptions, the error term is not correlated with 
the independent regressors. In this case, we see that z (the error term) contains the 
parameters of the HCC regressors. Thus, the error term is correlated with the regressors 
and therefore ostensibly violates the OLS assumptions. This may lead to bias and 
inconsistent estimates. 
 
The central issue is the covariance between 𝑧𝑧 and the 𝐻𝐻𝐻𝐻𝐻𝐻. 
 
It can be shown that this covariance is 
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧,𝐻𝐻𝐻𝐻𝐻𝐻) = −𝛽𝛽𝜎𝜎𝑤𝑤2  
 
Now we see that the extent of the problem depends on the variance of the measurement 
error from observation to observation of the FFS data. This is an empirical question. 
There are circumstances where there would be no significant bias. 
 
In practice it may not be unreasonable to assume that the measurement error is fairly 
constant for the HCC across FFS observations. For example, the probability of error of 
the HCC may be ten percent. Under this assumption, the variance would be close to zero 
(the variance of a constant is zero) and by extension the covariance would also be close to 
zero. This in turn implies that the OLS assumptions essentially hold and the regression 



 
  3 
 

procedure produces unbiased and consistent estimates. The variance may or may not be 
too small to have a substantial impact. The essential point is that, even if the problem 
conceptually exists, it may not have much effect in practice. The impact must be 
measurable, it cannot simply be assumed to exist. 
 
More importantly, for payment purposes CMS is not interested in each HCC per se, it is 
interested in the sum of the HCCs along with demographic characteristics used to create 
the risk score. This means that positive and negative errors will generally offset, 
mitigating the impact of any bias.  
 
Under this payment framework, while increasing the accuracy of the model may be 
appropriate, adjusting for underpayments while not adjusting for overpayments is 
inappropriate. Consider an example where HCCs have an average payment error of zero 
(i.e., unbiased, but a standard deviation of ten percent). It should be noted that plans are 
not paid for single HCCs. They are paid in the context of a portfolio of HCCs both within 
and across enrollees. In this circumstance, there will be some HCCs that have an 
underpayment of ten percent. However, because enrollees have a number of HCCs and 
plans have a number of enrollees, the error dramatically reduces by diversification. 
 

Table 1.  Reduction in Error by Diversification 
Number of 

HCCs 
Mean Error 

1 0 0.100 
2 0 0.071 
3 0 0.041 
4 0 0.020 
5 0 0.009 
6 0 0.004 
7 0 0.001 

 
We see that multiple HCC submissions dramatically reduce the error rate. In addition, if 
we attempted to adjust on only correct underpayments, we would introduce an 
overpayment bias. The regression estimates, for our purposes of estimating the 
relationship between Medicare payments and risk scores, must follow:  
 

𝐸𝐸𝐸𝐸𝐸𝐸����� = 𝛼𝛼𝛼𝛼� + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻������ 
 

Where 𝐸𝐸𝐸𝐸𝐸𝐸�����,𝛼𝛼� and 𝐻𝐻𝐻𝐻𝐻𝐻������ represent the model averages. The above equation implies that: 
 

𝛼𝛼𝛼𝛼� = 𝐸𝐸𝐸𝐸𝐸𝐸����� − 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻������ 
 

Thus, if the coefficients on the HCCs were biased downward, the demographic 
coefficients would be forced upward to maintain the expenditure average. Since risk 
scores sum the demographic factors as well as the HCCs, this would have a moderating 
effect on any bias. As a consequence, it is unlikely that a bias would occur and because of 
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the purpose for which the model is used, econometric corrections might not be the 
appropriate remedy.2 
  
II. Calibration Error Correction Limited to Recoveries is Economically Problematic 
 
If there was a payment bias due to audit miscalibration, an adjustment targeted only to 
plans in a RADV audit would be arbitrary. An adjustment to original payments would be 
more appropriate. 
  
Why Direct (Mean-Based) Application of the FFSA is Inappropriate 
 
Assume that an enrollee’s risk score is 𝑟𝑟𝑖𝑖𝑜𝑜. The enrollee is paid at the county rate 𝐻𝐻𝑖𝑖. The 
total original payment is 𝑟𝑟𝑖𝑖𝑜𝑜𝐻𝐻𝑖𝑖. Upon audit, the risk score is recalculated to 𝑟𝑟𝑖𝑖𝑐𝑐. The 
enrollee’s payment error (𝑃𝑃𝐸𝐸𝑖𝑖) is (𝑟𝑟𝑖𝑖𝑜𝑜 − 𝑟𝑟𝑖𝑖𝑐𝑐)𝐻𝐻𝑖𝑖. Positive values indicate that the plan was 
overpaid and vice versa for negative values. 
 
The calibration error (i.e., the error from using unaudited FFS data to develop the risk 
scores) presumably causes risk scores to have error due to the model being calibrated on 
unaudited FFS data. If ∆ is the percent error in risk score due to calibration error, then the 
payment error, accounting for calibration error, is: 
 

��𝑟𝑟𝑖𝑖𝑜𝑜(1 − ∆)� − �𝑟𝑟𝑖𝑖𝑐𝑐(1− ∆)��𝐻𝐻𝑖𝑖 = [(𝑟𝑟𝑖𝑖𝑜𝑜 − 𝑟𝑟𝑖𝑖𝑐𝑐)𝐻𝐻𝑖𝑖 − ∆(𝑟𝑟𝑖𝑖𝑜𝑜 − 𝑟𝑟𝑖𝑖𝑐𝑐)𝐻𝐻𝑖𝑖] = 𝑃𝑃𝐸𝐸𝑖𝑖 − ∆𝑃𝑃𝐸𝐸𝑖𝑖 
 
Thus, the corrected payment error is: 
 

𝑃𝑃𝐸𝐸𝑖𝑖∗∗ = (1 − ∆)𝑃𝑃𝐸𝐸𝑖𝑖 
 
In order for the direct adjustment to reduce the payment error, the ∆ must be positive. But 
if ∆ is positive, plans were overpaid in the first place. This leads to overpaid plans getting 
reduced recoveries. For example, if a representative MA population had an RO equal to 
1.045 and an Rc of 1.030,  ∆ would equal 1.5% ((1.045/1.030) – 1.0). Thus, the 𝑃𝑃𝐸𝐸∗ 
would need to be reduced by 0.985 (1-0.015):  
 

𝑃𝑃𝐸𝐸∗∗ = .985 ∗ 𝑃𝑃𝐸𝐸∗ 
 
A counterintuitive result arises when applying the adjustment in this scenario: the 
adjustment reduces the payment error amount. That is, MA plans were overpaid in the 
first place, and then they are being provided an offset to the payment error amount, which 
can be viewed as providing the plan an additional improper payment.  
 
Now, consider the circumstance where plans are underpaid because the original 
unaudited model calibrated risk scores were too low. In this circumstance, ∆ is negative 

                                                             
2 For example, the FFS and MA populations are different. A bias may appear because of 
differences in the manner in which HCCs are utilized in the FFS and MA populations. 
This would have nothing to do with measurement error bias. 
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and the adjustment will increase the payment error. This is problematic as the original 
plan payments are not increased to compensate. Applying the adjustment only to the 
payment error would damage plans, as they would have been paid less than their 
enrollees’ risk scores warrant and now the ∆ adjustment (i.e., FFSA) would actually take 
back more money as well. This is again a counterintuitive result.3  
 
In summary, if a plan’s original payments represent consistent underpayments, 
the correct economic solution is to pay plans for their underpayments. Thus, eliminating a 
need to adjust recoveries. Moreover, if plans were consistently underpaid, and the attempt 
was made to collect the true economic value of the recoveries, those plans would have to 
return an amount over and above their original payment from CMS. In this case, plans 
would be returning payments to CMS that they never received which is counterintuitive. 
 
To discount underpaid plans based directly on the audit miscalibration bias is contrary to 
economic reasoning. While its effect would moderate the impact of the original 
underpayment, the impacts would be economically arbitrary. 
 
III. Empirical Analysis 
 
This section describes the empirical analysis. 
 

A. Input Data 
 
This analysis requires three source data inputs, (a) FFS calibration data, (b) MA enrollee 
data and (c) the probability of HCC discrepancy for a RADV-like audit. 
 

1. FFS data  
 
The FFS data used in this analysis was the 2004-2005 file used for model calibration. 
There are 1,441,247 records in this data set. 
 

2. MA sample 
 
The MA sample has two million records that were sampled from the 2011 overpayment 
run. Approximately, one-half of the records are randomly sampled from the RADV 
eligible population and the other half are sampled from the non-RADV eligible 
population (excluding new, ESRD, and hospice enrollees). 
 

3. Comprehensive Error Rate Testing (CERT) 
 

                                                             
3 Say that the government purchased a $4 widget for $3. The government later wanted to 
get its money back because the widget was bad. A widget adjuster might say that there is 
a $1 bias underpayment. The correct economic value is (original price+bias = $3+$1) = 
$4. For the government to use the widget adjuster to correct the widget price to true 
economic value and demand $4 when they originally paid $3 is not equitable. 



 
  6 
 

A sample of FFS claims and associated medical records were collected from the (CERT) 
audit. The CERT audit samples FFS claims for the purpose of reporting the error rate in 
FFS procedure code reporting. The sample consisted of a subset of claims with CY 2008 
dates of service and the associated medical records. 
 

B. Methodology 
 

1. Probability of FFS Discrepancy  
 
FFS Claim Level Discrepancy rates 
 
Using the associated medical records, CPI performed a RADV-like review on the CERT 
data. We filtered the CERT data to create a subset of 8,630 unique claims to target for a 
RADV-like medical record review. The filtering (inclusion) criteria included: 

• Outpatient claims paid through Medicare Part B. While CERT also samples Part 
A claims, they were not included in the FFS08 sample 

• Claims that originated from an acceptable risk adjustment provider type 
• Claims that contained ICD-9-CM diagnosis code(s) that mapped to one or more 

CMS-HCC 
We will refer to the claims targeted for the audit as FFS08. CERT provided CPI with 
medical records for every claim in the sample. Using RADV coding guidelines, we 
performed a medical record review to develop discrepancy rates for the HCCs mapped 
from diagnoses on the claims. Table 2a summarizes the findings of the medical record 
review on FFS08. 

 
Table 2a: FFS08 CERT Sample RADV HCC Discrepancy Counts at Claim Level 
 

  HCC HCC Label Sampled Confirmed Discrepant %Discrepant 

ALL ALL 8,763 5,790 2,973 33.90% 

HCC1 HIV/AIDS 22 16 6 27.30% 

HCC2 Septicemia/Shock 51 30 21 41.20% 

HCC5 Opportunistic Infections 12 3 9 75.00% 

HCC7 Metastatic Cancer and Acute Leukemia 74 53 21 28.40% 

HCC8 Lung, Upper Digestive Tract, and Other Severe Cancers 246 149 97 39.40% 

HCC9 Lymphatic, Head and Neck, Brain and Other Major Cancers 275 170 105 38.20% 

HCC10 Breast, Prostate, Colorectal and Other Cancers and Tumors 790 444 346 43.80% 

HCC15 Diabetes with Renal or Peripheral Circulatory Manifestation 104 87 17 16.30% 

HCC16 Diabetes with Neurologic or Other Specified Manifestation 123 98 25 20.30% 

HCC17 Diabetes with Acute Complications 5 5 0 0.00% 

HCC18 Diabetes with Ophthalmologic or Unspecified Manifestation 64 57 7 10.90% 

HCC19 Diabetes without Complication 1,122 895 227 20.20% 

HCC21 Protein-Calorie Malnutrition 11 5 6 54.50% 
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  HCC HCC Label Sampled Confirmed Discrepant %Discrepant 

HCC25 End-Stage Liver Disease 4 3 1 25.00% 

HCC26 Cirrhosis of Liver 19 14 5 26.30% 

HCC27 Chronic Hepatitis 11 6 5 45.50% 

HCC31 Intestinal Obstruction/Perforation 56 41 15 26.80% 

HCC32 Pancreatic Disease 36 30 6 16.70% 

HCC33 Inflammatory Bowel Disease 33 25 8 24.20% 

HCC37 Bone/Joint/Muscle Infections/Necrosis 45 32 13 28.90% 

HCC38 Rheumatoid Arthritis and Inflammatory Connective Tissue Disease 219 161 58 26.50% 

HCC44 Severe Hematological Disorders 76 40 36 47.40% 

HCC45 Disorders of Immunity 32 4 28 87.50% 

HCC51 Drug/Alcohol Psychosis 4 2 2 50.00% 

HCC52 Drug/Alcohol Dependence 16 9 7 43.80% 

HCC54 Schizophrenia 197 111 86 43.70% 

HCC55 Major Depressive, Bipolar, and Paranoid Disorders 448 216 232 51.80% 

HCC67 Quadriplegia, Other Extensive Paralysis 4 0 4 100.00% 

HCC68 Paraplegia 7 6 1 14.30% 

HCC69 Spinal Cord Disorders/Injuries 8 7 1 12.50% 

HCC70 Muscular Dystrophy 1 1 0 0.00% 

HCC71 Polyneuropathy 81 43 38 46.90% 

HCC72 Multiple Sclerosis 33 22 11 33.30% 

HCC73 Parkinson's and Huntington's Diseases 69 51 18 26.10% 

HCC74 Seizure Disorders and Convulsions 112 85 27 24.10% 

HCC75 Coma, Brain Compression/Anoxic Damage 4 1 3 75.00% 

HCC77 Respirator Dependence/Tracheostomy Status 0       

HCC78 Respiratory Arrest 7 5 2 28.60% 

HCC79 Cardio-Respiratory Failure and Shock 234 170 64 27.40% 

HCC80 Congestive Heart Failure 519 363 156 30.10% 

HCC81 Acute Myocardial Infarction 41 29 12 29.30% 

HCC82 Unstable Angina and Other Acute Ischemic Heart Disease 80 54 26 32.50% 

HCC83 Angina Pectoris/Old Myocardial Infarction 103 54 49 47.60% 

HCC92 Specified Heart Arrhythmias 900 523 377 41.90% 

HCC95 Cerebral Hemorrhage 24 14 10 41.70% 

HCC96 Ischemic or Unspecified Stroke 139 56 83 59.70% 

HCC100 Hemiplegia/Hemiparesis 22 15 7 31.80% 

HCC101 Cerebral Palsy and Other Paralytic Syndromes 3 1 2 66.70% 

HCC104 Vascular Disease with Complications 105 70 35 33.30% 

HCC105 Vascular Disease 444 297 147 33.10% 
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  HCC HCC Label Sampled Confirmed Discrepant %Discrepant 

HCC107 Cystic Fibrosis 1 0 1 100.00% 

HCC108 Chronic Obstructive Pulmonary Disease 484 388 96 19.80% 

HCC111 Aspiration and Specified Bacterial Pneumonias 29 18 11 37.90% 

HCC112 Pneumococcal Pneumonia, Emphysema, Lung Abscess 12 6 6 50.00% 

HCC119 Proliferative Diabetic Retinopathy and Vitreous Hemorrhage 24 19 5 20.80% 

HCC130 Dialysis Status 18 15 3 16.70% 

HCC131 Renal Failure 604 384 220 36.40% 

HCC132 Nephritis 8 5 3 37.50% 

HCC148 Decubitus Ulcer of Skin 65 49 16 24.60% 

HCC149 Chronic Ulcer of Skin, Except Decubitus 185 148 37 20.00% 

HCC150 Extensive Third-Degree Burns 1 1 0 0.00% 

HCC154 Severe Head Injury 2 1 1 50.00% 

HCC155 Major Head Injury 16 6 10 62.50% 

HCC157 Vertebral Fractures without Spinal Cord Injury 41 32 9 22.00% 

HCC158 Hip Fracture/Dislocation 135 77 58 43.00% 

HCC161 Traumatic Amputation 2 2 0 0.00% 

HCC164 Major Complications of Medical Care and Trauma 73 43 30 41.10% 

HCC174 Major Organ Transplant Status 7 5 2 28.60% 

HCC176 Artificial Openings for Feeding or Elimination 20 18 2 10.00% 

HCC177 Amputation Status, Lower Limb/Amputation Complications 1 0 1 100.00% 

 
One of the principle challenges of using FFS08 for this purpose is that the CERT sample 
was not designed to produce a representative sample of diagnoses. As a consequence, for 
many of the diagnoses and by extension, the HCCs, we have an insufficient sample size 
to develop reliable discrepancy rates at the HCC level. As shown in Table 2a, 
discrepancy rates ranged from 0-100%. As expected, sample size was an issue for a 
number of the HCCs. Nearly half of the HCCs had fewer than 28 observations. 4 
 
In this context, variation in HCC discrepancy rates could vary for two reasons. First, 
there are attributes intrinsic to a specific HCC that drive measurement error higher or 
lower. For example, the underlying diseases may be more difficult to evaluate and 
therefore the discrepancy rate or measurement error would be higher. In addition to 
measurement error, insufficient sample size can also contribute to the variation in the 
discrepancy rate. The purpose of this analysis is to determine the effects of the 
measurement error on the model calibration. Variation due to insufficient sample size 
confounds the analysis. We mitigated the impact of small sample size on the analysis as 
follows. While sample size is an issue in estimating HCC specific error rates, we do have 
sufficient data to calculate a reliable estimate of an overall HCC expected discrepancy 

                                                             
4 The minimum number needed to determine a difference from zero at 90 percent 
confidence with a 0.15 margin of error. 
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rate. This is calculated by dividing the total number of HCCs sampled by the number of 
HCCs found to be discrepant. The overall discrepancy rate contains the most information 
as it is derived from all HCCs. Thus, in the absence of better information, it is the best 
measure of the probability of finding an HCC discrepant due to a RADV audit. 
Using the overall discrepancy rate as our baseline estimate of HCC discrepancy, we can 
statistically determine, in a context that controls for sample size effects, if the HCC 
specific rates are significantly different from the overall rate. We apply a statistical test to 
each HCC level discrepancy rate to determine if it is statistically different at a 95 percent 
level of confidence from the overall rate. This approach confirms that differences from 
the overall discrepancy rate are likely due to intrinsic qualities of the HCC rather than 
small sample size. 
 
When the individual rate is found to be statistically greater than the baseline rate, we 
assign the HCC to a high category. Conversely, we assign the HCC to a low category 
when the individual rate is statistically lower than the baseline rate. Rates found to be 
neither higher nor lower are assigned to the norm category. The discrepancy rates used in 
the analysis would then be assigned as follows. HCCs in the high and low category would 
use the mean of the respective category. HCCs in the norm category would use the 
baseline rate. Following this approach, the discrepancy rates for the baseline, high and 
low were 0.34, 0.46, and 0.21 respectively. Table 2b, reports the adjusted claim level 
error rate for each HCC. 
 
FFS Beneficiary Level Discrepancy rates 
 
Each enrollee HCC potentially has multiple claims with independent supportive medical 
records. Consequently, more medical claims imply the existence of more medical records 
to confirm an HCC. Clearly, the effective probability of discrepancy depends on the 
number of claims. 
 
Based on the above, we need to establish the probability that an HCC will be in error for 
an FFS enrollee given the expected number of associated claims. We will refer to this as 
the beneficiary level discrepancy rate. As previously described, we established base 
probabilities that each HCC j will be in error for a given claim, 𝐸𝐸𝑗𝑗. In table 2b, for each 
HCC j, we also establish the average number of underlying claims, 𝑧𝑧̅. Accordingly, the 
beneficiary level discrepancy rate is: 
 

𝐸𝐸𝑗𝑗�̅�𝑧 = [𝐻𝐻𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶 𝐿𝐿𝑒𝑒𝑐𝑐𝑒𝑒𝐶𝐶 𝛼𝛼𝑖𝑖𝐷𝐷𝑐𝑐𝑟𝑟𝑒𝑒𝐸𝐸𝐶𝐶𝐷𝐷𝑐𝑐𝐷𝐷 𝑅𝑅𝐶𝐶𝑅𝑅𝑒𝑒][𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐴𝐴𝑖𝑖𝐶𝐶𝐶𝐶] 
 
Table 2c shows the distribution of the beneficiary level discrepancy rates. The adjustment 
of the claim level discrepancy rate to a beneficiary level discrepancy rate results in a 
much smaller probability of an HCC being in error as a result of FFS diagnoses error in 
the FFS claims. As shown in the table, seventy-five percent of the beneficiary level 
discrepancy rates are 5% or below. The average rate is 3% and the median rate is 2%.  
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Table 2b: Statistical HCC Base Discrepancy Probabilities and Effective Error Rates 
 

HCC Cat 

Average 
Number of 
Claims per 
HCC* (𝑧𝑧̅) 

Claim Level Discrepancy 
Rate**  

Beneficiary Level Discrepancy Rate  
(𝐸𝐸𝑗𝑗�̅�𝑧) 

1 N 11.4 33.8% 0.000% 

2 N 4.1 33.8% 1.223% 

5 H 2.7 46.2% 12.259% 

7 N 7.0 33.8% 0.050% 

8 N 13.4 33.8% 0.000% 

9 N 11.0 33.8% 0.001% 

10 H 7.0 46.2% 0.432% 

15 L 3.3 20.9% 0.581% 

16 L 3.3 20.9% 0.581% 

17 N 2.6 33.8% 5.716% 

18 L 2.3 20.9% 2.888% 

19 L 6.2 20.9% 0.006% 

21 N 2.5 33.8% 6.814% 

25 N 3.7 33.8% 1.739% 

26 N 5.2 33.8% 0.349% 

27 N 3.2 33.8% 3.127% 

31 N 3.5 33.8% 2.278% 

32 L 3.7 20.9% 0.285% 

33 N 3.7 33.8% 1.898% 

37 N 4.7 33.8% 0.621% 

38 L 4.9 20.9% 0.045% 

44 H 6.1 46.2% 0.891% 

45 H 3.8 46.2% 5.332% 

51 N 2.2 33.8% 8.717% 

52 N 3.6 33.8% 2.084% 

54 H 9.0 46.2% 0.098% 

55 H 6.1 46.2% 0.889% 

67 N 4.5 33.8% 0.726% 

68 N 4.1 33.8% 1.225% 

69 N 2.4 33.8% 7.163% 

70 N 3.3 33.8% 2.851% 

71 H 2.6 46.2% 12.931% 

72 N 7.3 33.8% 0.037% 

73 N 5.2 33.8% 0.340% 

74 L 4.7 20.9% 0.063% 
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HCC Cat 

Average 
Number of 
Claims per 
HCC* (𝑧𝑧̅) 

Claim Level Discrepancy 
Rate**  

Beneficiary Level Discrepancy Rate  
(𝐸𝐸𝑗𝑗�̅�𝑧) 

75 N 2.4 33.8% 7.669% 

77 N 3.2 33.8% 3.100% 

78 N 2.0 33.8% 11.297% 

79 L 5.0 20.9% 0.040% 

80 N 6.1 33.8% 0.138% 

81 N 3.6 33.8% 2.057% 

82 N 2.9 33.8% 4.205% 

83 H 2.4 46.2% 15.435% 

92 H 7.0 46.2% 0.446% 

95 N 4.7 33.8% 0.630% 

96 H 4.1 46.2% 4.186% 

100 N 3.2 33.8% 3.188% 

101 N 2.6 33.8% 5.672% 

104 N 4.0 33.8% 1.241% 

105 N 3.4 33.8% 2.389% 

107 N 6.5 33.8% 0.084% 

108 L 5.0 20.9% 0.041% 

111 N 3.2 33.8% 3.248% 

112 N 2.3 33.8% 7.966% 

119 N 2.6 33.8% 5.710% 

130 L 4.5 20.9% 0.090% 

131 N 4.7 33.8% 0.593% 

132 N 2.3 33.8% 8.185% 

148 N 2.7 33.8% 5.642% 

149 L 4.8 20.9% 0.051% 

150 N 2.9 33.8% 4.372% 

154 N 2.3 33.8% 7.897% 

155 H 3.1 46.2% 8.908% 

157 N 3.6 33.8% 2.114% 

158 H 7.5 46.2% 0.295% 

161 N 3.1 33.8% 3.593% 

164 N 2.6 33.8% 5.886% 

174 N 10.1 33.8% 0.002% 

176 L 2.7 20.9% 1.359% 

177 N 3.4 33.8% 2.495% 

*The average claim per HCC was calculated using the underlying claims file for the 
2004-2005 calibration data set. 
**Rate as adjusted for sample size.  
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Table 2c: Summary Statistics for Effective Probabilities 
MAX 15.435% 
MIN 0.000% 

MEDIAN 1.819% 
AVERAGE 3.064% 

1st QUARTILE 0.306% 
3rd QUARTILE 5.092% 

 
2. Audit Miscalibration Impact 

 
Theoretical Impact to Risk Scores 
 
A key assertion justifying the FFS adjuster has been the assumption that if the underlying 
FFS claims were subject to a RADV-like audit that resulted in one or more beneficiary 
HCC changing from 1 to 0, the HCC risk factors from the re-calibrated CMS-HCC model 
would increase. The argument would then follow that the increased risk factors would 
increase a plan’s payment. 
 
To understand why this is incorrect, we must recognize how the CMS-HCC model is 
used in payment. First, CMS derives the base capitation rates by county and largely 
independent of the CMS-HCC model.5 This establishes the fundamental payment. The 
CMS-HCC model is then used to adjust those payments by predictive disease-cost load. 
For example, assume that in a particular county the capitated payment is $X.6 Plans in 
that county have the incentive to directly or indirectly select enrollees that will cost less 
than $X and exclude those likely to cost more than $X (adverse selection). Noticeably, 
plans that have a greater number of likely more expensive enrollees are at greater 
financial risk. Finally, this adverse selection will increase the cost to the Medicare Trust 
Fund. To combat this adverse selection and financial risk, CMS created a risk score (R) 
for each enrollee that will adjust base payments to pay more for likely more expensive 
enrollees and less for likely less expensive enrollees. So a plan receiving $X for each 
enrollee will instead receive $X*R. Since an average cost enrollee will have a risk score 
of one (R=1) the plan will still receive $X ($X*R=$X*1=$X) for an average enrollee. 
The CMS-HCC model bases the risk score (R) on the possession of demographic and 
chronic disease characteristics. Although fundamentally based on expenditures, the 
regression is adjusted such that the HCC and demographic factors will provide an 
average risk score of one on the calibrating FFS dataset. Thus, by definition of the CMS-
HCC model, the average FFS enrollee will never have a risk score of greater or less than 
one. 
 
On the other hand, the average MA enrollee risk score is not constrained to any particular 
value. If the MA population is generally unhealthy relative to the FFS population, the 
average risk score for an MA enrollee will be greater than one. If the MA population is 
                                                             
5 The county rates are primarily derived from FFS data and the bidding process. 
6 To simplify the discussion, for illustrative purposes we refer to a single county rate. In 
the actual payment there is a specific rate for each plan per county.   
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generally healthier than the FFS population, the average risk score for an MA enrollee 
will be less than one. 
 
Collectively, the calibration of the CMS-HCC model cannot, by definition, cause the risk 
factors to increase such that the average risk score of the calibrating FFS data is greater 
than one. Therefore, calibrating the CMS-HCC model on an audited dataset would simply 
change the risk factors relative to each other. It is conceptually possible that the MA 
population utilizes more of the risk factors that increase under the audited calibration 
methodology and thus increase MA payments. However, there is no theoretical reason for 
this to be the case. Nonetheless, we will examine the issue empirically. 
 
Impact Measurement 
 
The objective of the analysis is to compare the risk scores that come out of the original 
uncorrected data model to those that come out of the RADV-like corrected data model. 
The difference, when applied to MA enrollees, would be an estimate for the bias. To 
perform the analysis of the impact of the RADV-like audit, we proceed as follows. 
First, we estimate a proxy for the CMS-HCC model on the original uncorrected dataset 
and estimate the original factors. We then apply these original factors to the MA sample 
and estimate original risk scores for the uncorrected calibrating dataset. 
 
Next, we carry out a series of steps to simulate the same MA enrollees’ corrected risk 
scores that would have resulted from calibrating the model on a FFS dataset that was 
RADV-like corrected. 
 
We apply these probabilities to the calibrating dataset in such a manner that each existing 
HCC of each enrollee is subject to a  𝐸𝐸𝑗𝑗�̅�𝑧 probability of being redefined as discrepant. We 
then estimate the CMS-HCC model on the simulated corrected data. In the next step, we 
take the new coefficients and apply them on the original FFS data set, normalizing a new 
set of relative factors to one. The new relative factors are then applied to the beneficiary 
profiles in the MA sample to calculate new risk scores based on coefficients unaffected 
by FFS diagnoses error in the calibration. All other things being equal, the difference 
between the error-free risk score and the original risk score is the impact of FFS 
diagnoses error in the calibration. The normalization process is illustrated as follows:  
A simplified risk adjustment model is 
 

𝐸𝐸 = 𝛼𝛼𝛼𝛼𝐸𝐸𝛼𝛼 + 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻1 + 𝛿𝛿𝐻𝐻𝐻𝐻𝐻𝐻2 + 𝜖𝜖 
 
Here, 𝐸𝐸 is the enrollee expenditures from period (t), 𝛼𝛼𝐸𝐸𝛼𝛼 is a demographic characteristic 
(such as sex (male=1, female=1)), HCC1 and HCC2 are equal to one if the particular 
condition is present and zero if it is not present at time (t-1) and 𝜖𝜖 is a error term 
satisfying the assumptions of the Ordinary Least Squares Model. 
 
Since 𝐸𝐸 is dollar expenditures, the estimates coefficient of the model 𝛼𝛼�, �̂�𝛽, 𝛿𝛿 will also be 
dollar expenditures. 𝛼𝛼� is the incremental dollar cost of being female over male; �̂�𝛽 is the 
incremental dollar cost of having HCC1 and 𝛿𝛿 is the incremental dollar cost of having 
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HCC2. We start with an enrollee profile of five FFS enrollees. The actual FFS 
expenditures for enrollees 1-5 are E1, E2, E3, E4 and E5. 
 

⎣
⎢
⎢
⎢
⎢
⎡
𝐸𝐸 𝛼𝛼𝐸𝐸𝛼𝛼 𝐻𝐻𝐻𝐻𝐻𝐻1 𝐻𝐻𝐻𝐻𝐻𝐻2
𝐸𝐸1 1 0 1
𝐸𝐸2 1 1 1
𝐸𝐸3 0 1 1
𝐸𝐸4 1 0 1
𝐸𝐸5 1 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
We estimate the model and obtain estimated coefficient of 𝛼𝛼�, �̂�𝛽,𝛿𝛿 which are dollar 
estimates. To create the risk scores, we apply these estimates to the enrollee profiles 
derived from the uncorrected FFS data. 
 

𝑿𝑿� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐵𝐵𝑒𝑒𝐷𝐷𝑒𝑒 𝛼𝛼𝐸𝐸𝛼𝛼 𝐻𝐻𝐻𝐻𝐻𝐻1 𝐻𝐻𝐻𝐻𝐻𝐻2

1 𝛼𝛼� 0 𝛿𝛿
2 𝛼𝛼� �̂�𝛽 𝛿𝛿
3 0 �̂�𝛽 𝛿𝛿
4 𝛼𝛼� 0 𝛿𝛿
5 𝛼𝛼� �̂�𝛽 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Then we sum the expected expenditure for each enrollee: 
 

𝐵𝐵𝑒𝑒𝐷𝐷𝑒𝑒 𝑆𝑆𝑆𝑆𝐶𝐶 𝐸𝐸𝐷𝐷𝑅𝑅𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑒𝑒
1 𝛼𝛼� + 𝛿𝛿 = 𝐸𝐸�1
2 𝛼𝛼� + �̂�𝛽 + �̂�𝛿 = 𝐸𝐸�2
3 �̂�𝛽 + 𝛿𝛿 = 𝐸𝐸�3
4 𝛼𝛼� + 𝛿𝛿 = 𝐸𝐸�4
5 𝛼𝛼� + �̂�𝛽 = 𝐸𝐸�5

 

 
To normalize into risk scores, we first obtain the average predicted expenditure of the 
enrollees:  

𝐸𝐸� =
𝐸𝐸�1 + 𝐸𝐸�2 + 𝐸𝐸�3 + 𝐸𝐸�4 + 𝐸𝐸�5

5
 

 
Next, we divide the expected expenditures for each enrollee by the average expenditure 
of all enrollees: 
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𝐵𝐵𝑒𝑒𝐷𝐷𝑒𝑒 𝑆𝑆𝑆𝑆𝐶𝐶 𝑅𝑅𝑖𝑖𝐷𝐷𝑅𝑅 𝑆𝑆𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒

1
𝐸𝐸�1
𝐸𝐸�

= 𝑅𝑅1

2
𝐸𝐸�2
𝐸𝐸�

= 𝑅𝑅2

3
𝐸𝐸�3
𝐸𝐸�

= 𝑅𝑅3

4
𝐸𝐸�4
𝐸𝐸�

= 𝑅𝑅4

5
𝐸𝐸�5
𝐸𝐸�

= 𝑅𝑅5

 

 
The normalized risk scores 𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4,𝑅𝑅5 must, on average, equal one. It is important 
to note that this is true regardless of the enrollee profile used to calibrate the model and the 
level of “correctness” of the enrollee profile. It also follows that the estimates 𝛼𝛼�, �̂�𝛽, 𝛿𝛿 will 
always be such that the calibrating dataset’s sum of actual expenditures will be equal to the 
expected expenditures. Consistent with the above, the risk factor for DEM is 𝛼𝛼�

𝐸𝐸�
, for HCC1 

is 𝛽𝛽
�

𝐸𝐸�
  and for HCC2 is 𝛿𝛿

�

𝐸𝐸�
. Finally, corrected factors are applied to the MA enrollee sample 

to establish the corrected MA risk scores. For each enrollee k in the calibrated dataset, we 
calculate the percentage difference in risk score from the original score: 
 

𝑑𝑑𝑘𝑘 = (𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑅𝑅𝑒𝑒𝑑𝑑 𝑟𝑟𝑖𝑖𝐷𝐷𝑅𝑅 𝐷𝐷𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑘𝑘 − 𝑐𝑐𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝐷𝐷𝐶𝐶𝐶𝐶 𝑟𝑟𝑖𝑖𝐷𝐷𝑅𝑅 𝐷𝐷𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑘𝑘)/𝑐𝑐𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝐷𝐷𝐶𝐶𝐶𝐶 𝑟𝑟𝑖𝑖𝐷𝐷𝑅𝑅 𝐷𝐷𝑐𝑐𝑐𝑐𝑟𝑟𝑒𝑒𝑘𝑘 
 

If there are 𝑁𝑁 enrollees in the MA sample dataset, then the average of the percentage 
difference in risk score across these enrollees is an estimate of the bias, 
  

�̅�𝑑𝑘𝑘 =
1
𝑁𝑁
�𝑑𝑑𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

 
For the bias to be impactful against the MA plans, it should be a large, positive percentage. 
 

3. Simulation and Empirical Results 
 
In order to estimate variation in �̅�𝑑𝑘𝑘, we ran a simulation calculating 50 cases of the 
impact analysis. For each case, using a random number generator, we applied the 
beneficiary level discrepancy rates to get 50 independent corrected FFS data files. Each 
file was then used to re-calibrate the CMS-HCC model, re-normalize a new set of risk 
scores and estimate a new value of �̅�𝑑𝑘𝑘. This resulted in a distribution of 50 bias estimates, 
�̅�𝑑𝑘𝑘1 , , �̅�𝑑𝑘𝑘2, , �̅�𝑑𝑘𝑘3,⋯ , , �̅�𝑑𝑘𝑘50.  
 
This distribution of relative differences is reported below. The mean bias estimate of 
these 50 simulations was -0.08% and the mean bias estimate was between -.07%,-.09% at 
a 95% level of confidence. 
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An examination of Table 3 and Figure 1 makes it clear that the chance of any one of these 
simulations being greater than zero is very unlikely. While there appears to be a negative 
bias, it is so negligible that it should be considered to be zero. This shows that FFS 
diagnosis error in the FFS calibration data does not manifest a negative payment bias to 
MA plans. 
 

Table 3. Distributional Estimate of Bias 
Distributional Statistic Bias Estimate 
Mean Relative Difference -0.08% 
Median Relative Difference -0.09% 
Minimum Relative Difference -0.23% 
Maximum Relative Difference 0.01% 
25th Percentile -0.10% 
7th Percentile -0.05% 

 
 

Figure 1 Sampling Distribution of the Relative Difference 
 

 

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

-0.22 -0.20 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02

Pe
rc

en
t

Relative Difference

Figure 1: Sampling Distribution of the Relative 
Difference 
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