

DATABASE ADMINISTRATION
SQL SERVER STANDARDS

SQL Server Naming Conventions and Standards _____________________ 3

1.0 Databases, Files, and File Paths ___ 3
2.0 Tables and Views__ 3
3.0 Columns __ 3
4.0 Indexes ___ 3
5.0 Stored Procedures___ 4
6.0 Triggers___ 4
7.0 Variables__ 4

SQL Server Programming Guidelines _________________________________ 5
1.0 Introduction___ 5
2.0 Code Readability and Format __ 5
3.0 Datatypes___ 7
4.0 Stored Procedures___ 7
5.0 Performance Considerations ___ 8
6.0 Miscellaneous Topics ___ 10

SQL Server Security Model ___ 12
1.0 General Access Requirements __ 12
2.0 SQL Server Roles___ 12

SQL Server Migration ___ 14
1.0 RACF Requirements __ 14
2.0 Development Environment ___ 14
3.0 Production Migration ___ 14

SQL Server Execution Environment __________________________________ 14
1.0 Non-Web Applications __ 15
2.0 Web Applications___ 15

1/9/2006 CMS SQL Server Standards and Guidelines

2

SQL Server Naming Conventions and Standards

1.0 Databases, Files, and File Paths

• The database name should accurately reflect the database content and
function. All database names must be prefixed with the originating
component's acronym--e.g., CBC_Medicare_Compare or
EDG_Database_Tracking. Use both upper and lower case letters as
appropriate. Do not use spaces in the name.

• File names must match the database name.

• If the database is being developed off site from CMS's central office, please
create your databases in the default Microsoft directory structure. E.g.,

C:\Program Files\Microsoft SQL Server\
MSSQL\data\OIS_Personnel_Master_Data.MDF

2.0 Tables and Views

• Table names should accurately reflect the table's content and function. Do not
use spaces in the name.

• View names follow the same conventions as table names, but should be
prefixed with the literal 'VW'. E.g.,

vw1999NewRegulations

3.0 Columns
The standards below are applicable to all column names:

• Each column name must be unique within its table.

• Each column name must be derived from the business name identified during
the business/data analysis process. For more information on deriving column
names from business names, see Creating Physical Names for Elements and
Columns in the Data Administration standards. If the column was not
identified during the analysis of business data, it must still be given a spelled-
out logical name and an abbreviated physical name.

• Do not use reserved or key words as object names.

In addition, if the data is going to be brought in-house to interact with other CMS
computer systems, the following standards are applicable:

• The name can have a maximum of 18 characters.

• The name must include acceptable class and modifying words as specified in
CMS's Data Administration standards.

4.0 Indexes
Indexes are named to indicate the table they are attached to and the purpose of the
index.

1/9/2006 CMS SQL Server Standards and Guidelines

3

• Primary keys have a suffix of '_PK'.

• Foreign keys have a suffix of '_FKx' where x is a number that is incrementally
assigned.

• Clustered indexes have a suffix of '_IDX'.

• All other indexes have a suffix of '_NDXx' where x is incrementally assigned.

Only one suffix per index may be appended. The application of the appropriate suffix
should follow the following hierarchy: primary key, clustered index, foreign key,
other index. E.g., an index that is both a primary key and clustered should have a
suffix of '_PK'. It is good practice to index columns that are frequently used in a
query's selection criteria.

5.0 Stored Procedures

• System level stored procedures are named using a prefix 'SP__' (two
underscores) and a description of what the stored procedure does.

• All application level and user defined stored procedures are prefixed with the
constant 'USP' with a description of what the stored procedure does. E.g.,
UspGetLastModifiedDate

6.0 Triggers
Triggers are named to indicate the table they are for and the type of trigger. The
purpose of the trigger is identified in the prefix to the name. All triggers should be
prefixed with the letter 'T', a letter(s) designating the type, an underscore, and the
table name. The type should be designated as 'I' = insert, 'U' = update, 'D' = delete.
E.g., ti_Orders (Insert trigger)

7.0 Variables
Variable identifiers for datatypes should consist of two parts:

• The base, which describes the content of the variable;

• The prefix, which describes the datatype of the variable

Correct prefixes for each datatype are shown in the table below.

Datatype Prefix Example

Char chr @chrFirstName

Varchar chv @chvActivity

Nchar chrn @chrnLastName

Nvarchar chvn @chvnLastName

Text txt @txtNote

Ntext txtn @txtnComment

Datetime dtm @dtmTargetDate

Smalldatetime dts @dtsCompletedDate

Tinyint iny @inyActivityID

1/9/2006 CMS SQL Server Standards and Guidelines

4

Smallint ins @insEquipmentTypeID

Integer int @intAsset

Bigint inb @inbGTIN

Numeric or Decimal dec @decProfit

Real rea @reaVelocity

Float flt @fltLength

Smallmoney mns @mnsCost

Money mny @mnyPrice

Binary bin @binPath

Varbinary biv @bivContract

Image img @imgLogo

Bit bit @bitOperational

Timestamp tsp @tspOrderID

Uniqueidentifier guid @guidPrice

sql_variant var @varInventory

Cursor cur @curInventory

Table tbl @tblLease

SQL Server Programming Guidelines

1.0 Introduction
This section provides guidelines and best practices for SQL Server programming.

Guidelines and best practices should be followed as a general rule, but it is
understood that exception situations may exist. Developers must be prepared to
provide a justification for any exceptions.

2.0 Code Readability and Format

• Write comments in your stored procedures, triggers and SQL batches
generously, whenever something is not very obvious. This helps other
programmers understand your code. Don't worry about the length of the
comments, as it won't impact the performance, unlike interpreted languages
(e.g., ASP 2.0).

• Always use case consistently in your code. On a case insensitive server, your
code might work fine, but it will fail on a case sensitive SQL Server if the code
is not consistent in case. For example, if you create a table in SQL Server or a
database that has a case-sensitive or binary sort order, all references to the

1/9/2006 CMS SQL Server Standards and Guidelines

5

table must use the same case that was specified in the CREATE TABLE
statement. If you name the table "MyTable" in the CREATE TABLE statement
and use "mytable" in the SELECT statement, you get an "object not found"
error.

• Do not use column numbers in the ORDER BY clause. In the following
examples, note that the second query is more readable than the first.

Example 1:

SELECT OrderID, OrderDate
FROM Orders
ORDER BY 2

Example 2:

SELECT OrderID, OrderDate
FROM Orders
ORDER BY OrderDate

• Use the more readable ANSI-Standard Join clauses instead of the old style
joins. With ANSI joins, the WHERE clause is used only for filtering data. With
older style joins, the WHERE clause handles both the join condition and
filtering data. The first of the following two examples shows the old style join
syntax, while the second one shows the new ANSI join syntax.

Example 1:

SELECT a.au_id, t.title
FROM titles t, authors a, titleauthor ta
WHERE
a.au_id = ta.au_id AND
ta.title_id = t.title_id AND
t.title LIKE '%Computer%'

Example 2:

SELECT a.au_id, t.title
FROM authors a
INNER JOIN
titleauthor ta
ON
a.au_id = ta.au_id
INNER JOIN
titles t
ON
ta.title_id = t.title_id
WHERE t.title LIKE '%Computer%'

• To make SQL statements more readable, start each clause on a new line and
indent when needed. E.g.:

1/9/2006 CMS SQL Server Standards and Guidelines

6

SELECT title_id, title
FROM titles
WHERE title LIKE '%Computer%' AND
title LIKE '%cook%'

• As is true with any other programming language, do not use GOTO, or use it
sparingly. Excessive usage of GOTO can lead to hard-to-read-and-understand
code.

3.0 Datatypes

• Use User Defined Datatypes if a particular column repeats in multiple tables
so that the datatype of that column is consistent across all your tables.

• Use the CHAR data type for a column only when the column is non-nullable. If
a CHAR column is nullable, it is treated as a fixed length column in SQL
Server 7.0+. So, a CHAR(100), when NULL, will eat up 100 bytes, resulting in
space wastage. Use VARCHAR(100) in this situation. Of course, variable
length columns do have a very little processing overhead over fixed length
columns. Carefully choose between CHAR and VARCHAR depending upon the
length of the data you are going to store.

• Use Unicode datatypes, like NCHAR, NVARCHAR, or NTEXT, if your database
is going to store not just plain English characters but a variety of characters
used all over the world. Use these datatypes only when they are absolutely
needed as they use twice as much space as non-Unicode datatypes.

• Try not to use TEXT or NTEXT datatypes for storing large blocks of textual
data. The TEXT datatype has some inherent problems associated with it. For
example, you cannot directly write or update text data using the INSERT or
UPDATE statements. Instead, you have to use special statements like
READTEXT, WRITETEXT and UPDATETEXT. There are also a lot of bugs
associated with replicating tables containing text columns. So, if you don't
have to store more than 8KB of text, use CHAR(8000) or VARCHAR(8000)
datatypes instead.

4.0 Stored Procedures

• Always add an @Debug parameter to your stored procedures. This can be a
BIT data type. When a '1' is passed for this parameter, print all the
intermediate results, variable contents using SELECT or PRINT statements.
When '0' is passed do not print anything. This helps in quickly debugging
stored procedures as you don't have to add and remove these PRINT/SELECT
statements before and after troubleshooting problems.

• Do not call functions repeatedly within your stored procedures, triggers,
functions and batches. For example, you might need the length of a string
variable in many places of your procedure, but don't call the LEN function
whenever it's needed. Instead, call the LEN function once, and store the
result in a variable for later use.

• Make sure your stored procedures always return a value indicating their
status. Standardize on the return values of stored procedures for success and

1/9/2006 CMS SQL Server Standards and Guidelines

7

failures. The RETURN statement is meant for returning the execution status
only, but not data. If you need to return data, use OUTPUT parameters.

• If your stored procedure always returns a single row resultset, consider
returning the resultset using OUTPUT parameters instead of a SELECT
statement, as ADO handles output parameters faster than resultsets returned
by SELECT statements.

• Do not prefix your stored procedure names with 'sp_'. The prefix 'sp_' is
reserved for system stored procedure that ship with SQL Server. Whenever
SQL Server encounters a procedure name starting with 'sp_', it first tries to
locate the procedure in the master database, then it looks for any qualifiers
(database, owner) provided, then it tries dbo as the owner. You can save time
in locating the stored procedure by avoiding the 'sp_' prefix.

• Do not let your front-end applications query/manipulate the data directly
using SELECT or INSERT/UPDATE/DELETE statements. Instead, create stored
procedures and let your applications access these stored procedures. This
keeps the data access clean and consistent across all the modules of your
application, while at the same time centralizing the business logic within the
database.

5.0 Performance Considerations

• While designing your database, keep performance in mind. You can't really
tune performance later when your database is in production as it involves
rebuilding tables and indexes, re-writing queries, etc. Use the graphical
execution plan in Query Analyzer or SHOWPLAN_TEXT or SHOWPLAN_ALL
commands to analyze your queries. Make sure your queries do an "Index
seek" instead of an "Index scan" or a "Table scan." A table scan or an index
scan should be avoided where possible. Choose the right indexes on the right
columns.

• Initially, your data should be normalized at least to the third normal form. If
you then need to denormalize some of the data to improve performance, you
may do so. There should be a documented rationale for all denormalization
activities.

• Do not use 'SELECT *' in your queries. Always write the required column
names after the SELECT statement, as in the following example:

SELECT CustomerID, CustomerFirstName, City

This technique results in reduced disk I/O and better performance.

• Avoid the creation of temporary tables while processing data as much as
possible, as creating a temporary table means more disk I/O. Consider using
advanced SQL, views, SQL Server 2000 table variable, or derived tables
instead of temporary tables.

• Try to avoid wildcard characters at the beginning of a word while searching
using the LIKE keyword as that results in a full table scan, which defeats the
purpose of an index. The first example below results in an index scan, while

1/9/2006 CMS SQL Server Standards and Guidelines

8

the second example results in an index seek.

Example 1:

SELECT LocationID
FROM Locations
WHERE Specialties
LIKE '%pples'

Example 2:

SELECT LocationID
FROM Locations
WHERE Specialties
LIKE 'A%s'

The use of functions in SELECT statements will not take advantage of
indexing.

• Also avoid searching using not equals operators (<> and NOT) as they result
in table and index scans.

• Use derived tables wherever possible, as they perform better. Consider the
following query to find the second highest salary from the Employees table:

SELECT MIN(Salary)
FROM Employees
WHERE EmpID IN
(SELECT TOP 2 EmpID
FROM Employees
ORDER BY Salary Desc)

The same query can be re-written using a derived table, as shown below, and
it performs twice as fast as the above query:

SELECT MIN(Salary)
FROM
(SELECT TOP 2 Salary
FROM Employees
ORDER BY Salary Desc)
AS A

This is just an example and your results might differ in different scenarios
depending on the database design, indexes, volume of data, etc. So, test all
the possible ways a query could be written and go with the most efficient one.

• Use SET NOCOUNT ON at the beginning of your SQL batches, stored
procedures and triggers in production environments, as this suppresses
messages like '(1 row(s) affected)' after executing INSERT, UPDATE, DELETE
and SELECT statements. This improves the performance of stored procedures
by reducing network traffic.

1/9/2006 CMS SQL Server Standards and Guidelines

9

• Perform all your referential integrity checks and data validations using
constraints (foreign key and check constraints) instead of triggers, as they
are faster. Use triggers only for auditing, custom tasks and validations that
cannot be performed using constraints. Constraints save you time as well, as
you don't have to write code for these validations, allowing the RDBMS to do
all the work for you.

6.0 Miscellaneous Topics

• Try to avoid server side cursors as much as possible. Always stick to a "set-
based approach" instead of a "procedural approach" for accessing and
manipulating data. Cursors can often be avoided by using SELECT statements
instead.

If a cursor is unavoidable, use a WHILE loop instead. A WHILE loop is always
faster than a cursor. For a WHILE loop to replace a cursor you need a column
(primary key or unique key) to identify each row uniquely. Every table must
have a primary or unique key in any case.

• Views are generally used to show specific data to specific users based on their
interest. Views are also used to restrict access to the base tables by granting
permission only on views. Yet another significant use of views is that they
simplify your queries. Incorporate your frequently required, complicated joins
and calculations into a view so that you don't have to repeat those
joins/calculations in all your queries. Instead, just select from the view.

• If you have a choice, do not store binary or image files (Binary Large Objects
or BLOBs) inside the database. Instead, store the path to the binary or image
file in the database and use that as a pointer to the actual binary file stored
elsewhere on a server. Retrieving and manipulating these large binary files is
better performed outside the database. Keep in mind that a database is not
meant for storing files.

• Avoid dynamic SQL statements as much as possible. Dynamic SQL tends to
be slower than static SQL, as SQL Server must generate an execution plan
every time at runtime. IF and CASE statements come in handy to avoid
dynamic SQL. Another major disadvantage of using dynamic SQL is that it
requires users to have direct access permissions on all accessed objects, like
tables and views. Generally, users are given access to the stored procedures
which reference the tables, but not directly on the tables. In this case,
dynamic SQL will not work.

• Consider the following drawbacks before using the IDENTITY property for
generating primary keys. IDENTITY is very much SQL Server specific, and you
will have problems porting your database application to some other RDBMS.
IDENTITY columns have other inherent problems. For example, IDENTITY
columns can run out of numbers at some point, depending on the data type
selected; numbers can't be reused automatically, after deleting rows; and
problems may arise if you are using replication.

So, come up with an algorithm to generate a primary key in the front-end or
from within the inserting stored procedure. There still could be issues with
generating your own primary keys too, like concurrency while generating the

1/9/2006 CMS SQL Server Standards and Guidelines

10

key, or running out of values. So, consider both options and choose the one
that is most appropriate for your circumstances.

• Minimize the use of NULLs, as they often confuse the front-end applications,
unless the applications are coded intelligently to eliminate NULLs or convert
the NULLs into some other form. Any expression that deals with NULL results
in a NULL output. ISNULL and COALESCE functions are helpful in dealing with
NULL values.

• Always use a column list in your INSERT statements. This helps in avoiding
problems when the table structure changes (like adding or dropping a
column).

• Always access tables in the same order in all your stored procedures and
triggers consistently. This helps in avoiding deadlocks. Other things to keep in
mind to avoid deadlocks are:

• Keep your transactions as short as possible.

• Touch the least amount of data possible during a transaction.

• Do not wait for user input in the middle of a transaction.

• Do not use higher level locking hints or restrictive isolation levels
unless they are absolutely needed.

• Make your front-end applications deadlock-intelligent, that is, these
applications should be able to resubmit the transaction in case the
previous transaction fails with error 1205.

• In your applications, process all the results returned by SQL Server
immediately so that the locks on the processed rows are released,
hence no blocking.

• Offload tasks, like string manipulations, concatenations, row numbering, case
conversions, type conversions etc., to the front-end applications if these
operations are going to consume more CPU cycles on the database server.
Also try to do basic validations in the front-end itself during data entry. This
saves unnecessary network roundtrips.

• Always check the global variable @@ERROR immediately after executing a
data manipulation statement (like INSERT/UPDATE/DELETE), so that you can
rollback the transaction in case of an error (@@ERROR will be greater than 0
in case of an error). This is important because, by default, SQL Server will not
rollback all the previous changes within a transaction if a particular statement
fails. This behavior can be changed by executing SET XACT_ABORT ON. The
@@ROWCOUNT variable also plays an important role in determining how
many rows were affected by a previous data manipulation (also, retrieval)
statement, and based on that you could choose to commit or rollback a
particular transaction.

• Always store 4 digit years instead of 2 digit years in dates (especially when
using CHAR or INT datatype columns) to avoid any confusion and problems.
This is not a problem with DATETIME columns, as the century is stored even if
you specify a 2 digit year. But it's always a good practice to specify 4 digit
years even with DATETIME datatype columns.

1/9/2006 CMS SQL Server Standards and Guidelines

11

• Do not forget to enforce unique constraints on your alternate keys.

SQL Server Security Model

1.0 General Access Requirements

• To be able to access data from a database, a user must pass through two
stages of authentication, one at the SQL Server level and the other at the
database level. These two stages are implemented using Login names and
User accounts respectively. A valid login is required to connect to SQL Server
and a valid user account is required to access a database.

• Login: A valid login name is required to connect to a SQL Server instance. At
CMS a valid login is approved by the RACF group and entered into their
system. These login names are also maintained within the master database of
the SQL Server they are authorized to access.

• User: A valid user account within a database is required to access that
database. User accounts are specific to a database. All permissions and
ownership of objects in the database are controlled by the user account. SQL
Server logins are associated with these user accounts. A login can have
associated users in different databases, but only one user per database.

• Controlling access to objects within the database and managing permissions:
Apart from managing permissions at the individual database user level, SQL
Server 7.0/2000 implements permissions using roles. See the next section for
information on types of roles.

2.0 SQL Server Roles
A role is nothing but a group to which individual logins/users can be added, so that
the permissions can be applied to the group, instead of applying the permissions to
all the individual logins/users. There are three types of roles in SQL Server 7.0/2000:

• Fixed server roles will be given to project leaders and local DBAs.

• Fixed database roles will be given to database users.

• Application roles will be assigned to Web applications.

2.1 Fixed Server Roles
These are server-wide roles. Logins can be added to these roles to gain the
associated administrative permissions of the role. Fixed server roles cannot be
altered and new server roles cannot be created.

Here are the fixed server roles and their associated permissions in SQL Server 2000:

Fixed Server Role Permissions

sysadmin Can perform any activity in SQL Server

1/9/2006 CMS SQL Server Standards and Guidelines

12

serveradmin Can set server-wide configuration options, shut down the
server

setupadmin Can manage linked servers and startup procedures

securityadmin Can manage logins and CREATE DATABASE permissions,
also read error logs and change passwords

processadmin Can manage processes running in SQL Server

dbcreator Can create, alter, and drop databases

diskadmin Can manage disk files

bulkadmin Can execute BULK INSERT statements

2.2 Fixed Database Roles
Each database has a set of fixed database roles, to which database users can be
added. These fixed database roles are unique within the database. While the
permissions of fixed database roles cannot be altered, new database roles can be
created.

Here are the fixed database roles and their associated permissions in SQL Server
2000:

Fixed Database
Role

Permissions

db_owner Has all permissions in the database

db_accessadmin Can add or remove user IDs

db_securityadmin Can manage all permissions, object ownerships, roles and
role memberships

db_ddladmin Can issue ALL DDL, but cannot issue GRANT, REVOKE, or
DENY statements

db_backupoperator Can issue DBCC, CHECKPOINT, and BACKUP statements

db_datareader Can select all data from any user table in the database

db_datawriter Can modify any data in any user table in the database

db_denydatareader Cannot select any data from any user table in the database

db_denydatawriter Cannot modify any data in any user table in the database

2.3 Application Roles
Application roles are another way of implementing permissions. These are quite
different from the server and database roles. After creating and assigning the
required permissions to an application role, the client application needs to activate

1/9/2006 CMS SQL Server Standards and Guidelines

13

this role at run-time, using a password. By activating the role, the application
inherits the permissions associated with that role. Application roles override standard
permissions. Application roles are database specific.

SQL Server Migration

1.0 RACF Requirements

• All users of the database must be cleared by the RACF group.

• The users and database name will be passed on from RACF to DBA.

2.0 Development Environment

• SQL Server databases may be developed offsite, upsized from an Access
database or developed in-house on a development server.

• Development of the physical model will occur after an ERWIN logical data
model is submitted to the EDG/DDS DA staff. For more information on the
logical model and DA standards, see Data Administration Standards.

• From the physical model the DDL will be generated to create your database
on a QA/development server at CMS.

• If the database is to be accessed via the web, it must be tested on the
QA/CMSnet site. Otherwise, it must be tested on the development test SQL
SERVER within the CMS data center (currently CONDS04).

• The EDG/DDS SQL Server DBA team will build the database and establish the
users.

3.0 Production Migration

• After the database has been tested and proven satisfactory to the user, it will
be migrated to production.

• If the database is accessed via the web and the application has a sign-off
from the web support team, the EDG/DDS SQL Server team will move the
database to the production environment housed offsite by AT&T.

• If the database is not web related and the business office approves the test,
the database is moved to the production SQL Server within the CMS data
center (currently CONDS03).

• The database will be backed up and restored to production so that it is an
exact duplicate of the test database in structure. The data will also be
replicated to production if so desired.

SQL Server Execution Environment

1/9/2006 CMS SQL Server Standards and Guidelines

14

1.0 Non-Web Applications

• Non-Web applications reside on local servers at the CMS site.

• The servers are CONDS03 (IP 158.73.105.23) and CONDS04 (IP
158.73.52.39). The first is the production box and the latter is development.
Both of these servers are SQL SERVER version 7.0.

• Both boxes run on the Windows 2000 operating system. There are plans to
upgrade both these boxes to SQL Server version 2000 in the year 2002.

• All new systems will first be placed on the test box and migrated to
production following standard configuration management practices.

2.0 Web Applications

• Web applications reside on servers located at AT&T.

• These servers run under the Windows 2000 operating system and are
maintained by AT&T personnel.

• The servers run SQL SERVER version 2000.

2.1 Intranet Applications

• The Intranet (or CMSNET) is accessed by CMS employees only.

• This site has two application servers: 7667www4 (IP 32.86.194.135) and
7667www5 (IP 32.86.194.136). The former is the production Intranet
application server and the latter is for testing.

• Both application servers point to the database server 7667db3 (IP
32.86.194.136).

2.2 Internet Applications

• The Internet (or cms.gov) is accessed by the public.

• Each database server is clustered to ensure maximum up time.

• Two physically distinct locations ensure fail safe operations:

The Ashburn Site

• The application servers at the Ashburn site are 7667www0 (IP
32.86.180.134) and 7667www1 (IP 32.86.180.135).

• They both point to the database servers that are clustered at IP
32.86.181.185.

• For administrative purposes, these databases are read only.
Applications that update data do not reside on the Ashburn database
server.

1/9/2006 CMS SQL Server Standards and Guidelines

15

The Koll Site

• The application servers at Koll are 7666www0 (IP 32.86.183.36) and
7666www1 (IP 32.86.183.37).

• Both these application servers point to a clustered database server
whose IP address is 32.86.183.10. This database server houses all
updateable databases.

2.3 Internet Staging Database

• A staging database server is available for Internet testing.

• This server is accessed by the staging Application server 7667www2 (IP
32.86.180.136).

• The database server is 7667db0 (IP 32.86.181.182).

1/9/2006 CMS SQL Server Standards and Guidelines

16

	1.0 Databases, Files, and File Paths
	2.0 Tables and Views
	3.0 Columns
	4.0 Indexes
	5.0 Stored Procedures
	6.0 Triggers
	7.0 Variables
	SQL Server Programming Guidelines
	1.0 Introduction
	2.0 Code Readability and Format
	3.0 Datatypes
	4.0 Stored Procedures
	5.0 Performance Considerations
	6.0 Miscellaneous Topics

	SQL Server Security Model
	1.0 General Access Requirements
	2.0 SQL Server Roles
	2.1 Fixed Server Roles
	2.2 Fixed Database Roles
	2.3 Application Roles

	SQL Server Migration
	1.0 RACF Requirements
	2.0 Development Environment
	3.0 Production Migration

	SQL Server Execution Environment
	1.0 Non-Web Applications
	2.0 Web Applications
	2.1 Intranet Applications
	2.2 Internet Applications
	2.3 Internet Staging Database

